# Optical Design Made Simple





**Anax Hyperion™** 

ANAX Hyperion<sup>™</sup> gives you the power to design and simulate optical systems without the need for prior knowledge of optics

# Why choose Hyperion™?

Suitable for absolute beginners in optics

- Simple and intuitive graphical user interface
- Design and simulate a system in a few easy steps
- Low investment cost, but powerful design capabilities
- Design optical systems from lens catalogs
- Export your optical systems to STEP, STL or even CNC

# **Software Features**

Simple user interface with few buttons!

- Optical elements table
- Light sources table
- System layout plot
- Catalog of more than 600 lenses (Edmund Opt., Thorlabs, ...)
- Catalog of more than 1 500 lens materials (Ohara, Schott, ...)









## **Lens Array Module**

#### **Geometric Lens Arrays**

- Generate regular and non-regular lens arrays
- Hexagonal, annular, rectangular segments
- Define light input/output for each segment, and get the surface shape in 1-click!



Example of geometric segments layouts

#### **Topological Lens Arrays**

- Produce complex illumination patterns with topological lens arrays
- Import the illumination pattern from raster graphic files
- Segment layout and surface shapes computed automatically



Topological lens array generated by automatic construction



Simulation of resulting illumination pattern

## Al Module

- Proposes optical layouts for a given focal length, numerical aperture and field of view
- Adjustable parameters including lens assembly size, number of elements and total cost
- Choice of fully custom and/or catalog lenses in the generated design



# **Typical Case Studies**

#### Case 1

University researcher A wants to design a new non-contact thermometer that measures temperature at different distances from a heat source. Combining a multi-focal lens array and aspheric condenser lens in the software, the resulting optical system can measure temperature with ~0.1°C accuracy.

#### Case 2

Company engineer B wants to design a new microscope objective for a micro-fluidic experiment, that will allow him to measure the velocity of particles moving in three dimensions. The automatically generated geometric lens array allows simultaneous acquisition of images from 6 slicing planes.



Multi-focal lens array (Case 1)



3D imaging lens array (Case 2)



Ray tracing of composite lens system (Case 1)

### **About Us**

ANAX Optics was established in 2022 as design and provider of Micro Lens Array (MLA). We provide optical system design and fabrication methods, collaborating with international ultra-precision manufacturing partners.







2-1-8, Otsu-shi, Shiga, Japan